
THE HILLE-YOSIDA THEOREM

ALVIS ZHAODGHN

1. Semigroup of Operators

1.1. Semigroup Operators.

Definition 1.1. Let X be a Banach space. Q(t), t ∈ [0,+∞) is a family of bounded linear
operators over X that satisfies:

(1) Q(0) = I
(2) Q(s+ t) = Q(s)Q(t) for s, t ≥ 0.

We say Q(t) is a (one-parameter) semigroup of operators. We say Q(t) is strongly
continuous if it also satisfies:

(3) limt→0 ||Q(t)x− x|| = 0 for every x ∈ X.

We can associate with {Q(t)} the operator Aε by

(1.2) Aεx =
1

ε
[Q(ε)x− x] x ∈ X, ε > 0

Definition 1.3. The infinitesimal generator A is defined by

(1.4) Ax = lim
ε→0

Aεx

The domain D(A) is the set of all x where the above limit exists.

Clearly D(A) is a subspace of X. We check that A is a linear operator. For x1, x2 ∈ D(A),
by strong continuity as ε → 0, Q(ε)x1 + Q(ε)x2 → x1 + x2, and Q(ε)(x1 + x2) → x1 + x2,
so limε→0Aε(x1 + x2) = limε→0Aε(x1) + Aε(x2), that is A(x1 + x2) = A(x1) + A(x2).
A(αx) = αA(x) for α ∈ C follows from the same argument.

Given the definition of the infinitesimal generator, it is natural to ask when an operator
is the infinitesimal generator of such a semigroup. This is answered in theorem 1.39.

Before stating the properties of {Q(t)}, we recall Banach Steinhaus Theorem from class
without proof, which will be used in the proof of the following big theorem.

Theorem 1.5. (Banach Steinhaus) Let V,W be Banach spaces. Let Tj ∈ L(V,W ) for
j = 1, 2, 3, ... Assume that for each v ∈ V , {Tjv} is bounded for all j. (i.e. ∃Cv such that
|Tjv| ≤ Cv.) Then {||Tj ||} is bounded for all j. (i.e. ∃C such that ||Tj || ≤ C ∀j.)

The definition of equicontinuity and the following two lemma will also be used in proving
theorem 1.10 and 1.39:
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Definition 1.6. Let X and Y be topological vector spaces and Γ a collection of linear maps
from X to Y . We say Γ is equicontinuous if for every neighborhood W of 0 in Y there
corresponds a neighborhood V of 0 in X such that Γ(V ) ⊂W for all Λ ∈ Γ.

Lemma 1.7. Let X,Y be topological vector spaces, E ∈ B(X,Y ) is equicontinuous⇔ ∃M <
∞ such that ||Λ|| ≤M ∀Λ ∈ E.

Lemma 1.8. Let X,Y be topological vector spaces, Y is a Frechet space. {Λn} be an
equicontinuous sequence of linear mappings from X to Y . If {Λn} converges on some dense
subset of X, it converges on all X, and the limit is continuous, that is

(1.9) Λ(x) = lim
n→∞

Λn(x)

and Λ(x) is continuous.

Now we are ready to state the first main theorem of strongly continuous semigroup
operators.

Theorem 1.10. If the semigroup {Q(t)} is strongly continuous, then:

(1) There are constants C, γ such that

(1.11) ||Q(t)|| ≤ Ceγt 0 ≤ t ≤ ∞

(2) t→ Q(t)x is a continuous map of [0,∞) into X, for every x ∈ X.
(3) D(A) is dense in X and A is closed.
(4) For every x ∈ D(A), we have

(1.12)
d

dt
Q(t)x = AQ(t)x = Q(t)Ax

(5) For every x ∈ X,

(1.13) Q(t)x = lim
ε→0

(exp(tAε))x

where the convergence is uniform on every compact subset of [0,∞).
(6) If λ ∈ C and Reλ > γ. the integral:

(1.14) R(λ)x =

∫ ∞
0

e−γtQ(t)xdt

defines an operator R(λ) ∈ B(X)(bounded operators X → X), called the resolvent
of {Q(t)}, whose range is D(A) and which inverts λI −A.

Proof. (1) Suppose there exists a sequence (tn) → 0 such that ||Q(tn)|| → ∞. Ba-
nach Steinhaus theorem (using the contrapositive) implies that ∃x ∈ X such that
{||Q(tn)x||} is unbounded, which is a contradiction to to the assumption that Q(t)
is strong continuous (i.e. limt→0 ||Q(t)x−x|| = 0). Hence, there exists C and δ > 0
such that ||Q(t)|| < C on [0, δ]. Now, if t ∈ [0,+∞), we pick n ∈ N such that
(n− 1)δ ≤ t < nδ, then ||Q(t/n)|| < C.

(1.15) ||Q(t)|| = ||Q(n · t
n

)|| = ||(Q(
t

n
))n|| ≤ ||Q(t)||n ≤ Cn ≤ C1+t/δ

Finally, choose γ = logC1/δ, we have ||Q(t)|| ≤ Ceγt
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(2) Let 0 ≤ s < t ≤ T , then

(1.16)

||Q(t)x−Q(s)x|| = ||Q(s+ t− s)x−Q(s)x|| = ||Q(s)(Q(t− s)x− Ix)||
≤ ||Q(s)|| ||(Q(t− s)x− Ix)||
≤ CeγT ||(Q(t− s)x− Ix)||

We note that the right hand side tends to zero when t−s→ 0 since limt→0 ||Q(t)x−
x|| = 0, which proves the continuity.

(3) Since the previous part, we can define the integral

(1.17) Mtx :=
1

t

∫ t

0

Q(s)x ds (x ∈ X, t > 0)

We note that Mt ∈ B(X) and ||Mt|| ≤ Ceγt by part (1) of this theorem. We claim:

(1.18) AεMtx = AtMεx (ε, t > 0, x ∈ X)

To prove the claim, we consider the equation:

(1.19)

∫ ε+t

ε

Q(s)x−
∫ t

0

Q(s)x =

∫ ε+t

t

Q(s)x−
∫ ε

0

Q(s)x

By a change of variable, we have the left hand side of 1.19 equals

(1.20)

∫ t

0

[Q(ε+ s)−Q(s)]x =

∫ t

0

[Q(ε)Q(s)−Q(s)]x

= ((Q(ε)− I)t)(
1

t

∫ t

0

Q(s)x) = εAεtMtx

The right hand side of 1.19 equals to:

(1.21)

∫ ε

0

[Q(t+ s)−Q(s)]x =

∫ ε

0

[Q(t)Q(s)−Q(s)]x

= ((Q(t)− I)ε)(
1

ε

∫ ε

0

Q(s)x) = tAtεMεx

Above calculations proves the claim 1.18. We also have:

(1.22) ||Mtx− x|| = ||
1

t

∫ t

0

(Q(s)− I)x ds|| ≤ || sup
[0,t]

Q(s)x− Ix|| → 0

Thus, as ε → 0, AtMεx → Atx, so AεMtx → At. This shows that Mtx ∈ D(A).
Since Mεx→ x, D(A) is dense in X. Moreover, we have

(1.23) AMtx = lim
ε→0

AεMtx = lim
ε→0

AtMεx = Atx

To show A is a close map, suppose xn ∈ D(A), xn → x, and Axn → y. Since
Q(s), Q(t) commute, Aε and Mt commute, and therefore A commutes with Mt on
D(A). 1.23 gives:

(1.24) Atxn = AMtxn = MtAxn

As n→∞, we have on the one hand Atxn → Atx, and on the other hand MtAxn →
Mty. So Atx = Mty. As t → 0. Mty → y. This shows that the limit of the left
hand side exists i.e. x ∈ D(A) and Ax = y, which finishes this part of the proof.
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(4) Multiply t on both sides of 1.23 Gives

(1.25) A

∫ t

0

Q(s)x ds = Q(t)x− x

Since Q(s) is continuous, we can differentiate both sides with respect to t, which
gives us (4). (Q(t)Ax = AQ(t)x since Q(t)Aε = AεQ(t))

(5) We first need an estimate of exp{tAε}:

(1.26)

|| exp{tAε}|| = ||e−t/ε exp{ t
ε
Q(ε)}|| = ||e−t/ε

∞∑
n=0

tnQ(nε)

εnn!
||

≤ e−t/ε
∞∑
n=0

tn||Q(nε)||
εnn!

≤ e−t/ε
∞∑
n=0

tnCeγεn

εnn!
(by part (1))

= Ce−t/ε exp(
teγε

ε
) = C exp(

t

ε
(eγε − 1))

For 0 < ε ≤ 1, we claim C exp( tε (e
γε − 1)) < C exp(teγ). To see this, we show

(1.27)
t

ε
(eγε − 1) < teγ ⇔ teγε − t < εteγ

We denote the LHS, RHS by f(ε), g(ε) resp. First we notice that f(0) = g(0).
Taking ε derivative on both sides gives f ′(ε) = tγeγε and g′(ε) = teγ . Now notice
again that f ′(1) = g′(1). We check that f ′′(ε) = tγ2eγε > 0, g′′(ε) = 0 ⇒ f ′(ε) <
g′(ε)⇒ f(ε) < g(ε) and the claim is proved. Above discussion gives for 0 < ε < 1:

(1.28) || exp{tAε}|| ≤ C exp(teγ)

Now for fixed x ∈ X, we define:

(1.29) φ(s) = (exp((t− s)Aε))Q(s)x (0 ≤ s ≤ t)

If x ∈ D(A), part (4) of this theorem gives:

(1.30) φ′(s) = (exp((t− s)Aε)Q(s)(Ax−Aεx)

(1.31)
||φ′(s)|| ≤ ||(exp((t)Aε)|| ||Q(t)|| ||(Ax−Aεx)||

≤ C exp(teγ)Ceγt||(Ax−Aεx)|| ≡ K(t)||(Ax−Aεx)||

where K(t) is a constant that depend on t, 0 < ε ≤ 1. We note that φ(t) = Q(t)x,
and φ(0) = exp(tAε)x. Fundamental theorem of calculus implies:

(1.32) ||Q(t)x− exp(tAε)x|| = ||φ(t)− φ(0)|| = ||
∫ t

0

φ′(s)ds|| ≤ tK(t)||(Ax−Aεx)||

If x ∈ D(A), taking ε→ 0 proves the statement in the theorem.
To prove for all x ∈ X, we first note that ||Q(t) − exp(tAε)|| is bounded for 0 <
t ≤ T, 0 < ε ≤ 1 since ||Q(t)|| and || exp(tAε)|| are. So these operators form an
equicontinuous family of operators by 1.7. It follows that their convergence on the
dense set (D)(A) forces their convergence of all x ∈ X by 1.8, which finishes the
proof of this part of the theorem.
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(6) We first have ||R(γ)|| ≤ C
∫∞
0
e(γ−Reλ)tdt = C 1

Reλ−γ < ∞. So R(γ) is bounded.

We calculate εAεR(γ)x:

(1.33)

εAεR(γ)x =

∫ ∞
0

e−γt(Q(ε)− I)Q(t)xdt =

∫ ∞
0

e−γt(Q(ε+ t)−Q(t))xdt

=

∫ ∞
0

e−γtQ(ε+ t)xdt−
∫ ∞
0

e−γtQ(t)xdt

Replace t with t− ε to the first integral, and applying integration by parts, we have:

(1.34)

AεR(γ)x =
1

ε
e−εγ

∫ ∞
ε

e−γtQ(t)x dt− 1

ε

∫ ∞
0

e−γtQ(t)xdt

=
1

ε
e−εγ

(∫ ∞
0

e−γtQ(t)x dt−
∫ ε

0

e−γtQ(t)x dt

)
− 1

ε

∫ ∞
0

e−γtQ(t)xdt

=
1

ε
(eεγ − 1)R(γ)x− 1

ε
eεγ
∫ ε

0

e−γtQ(t)x dt

As ε → 0 1.22 shows that the second integral → x. Below calculations show that
1
ε (eεγ − 1)R(γ)x→ γ:

(1.35)
1

ε
(eεγ − 1) =

1

ε
(1 + ελ+ o(λε)− 1)→ λ

Thus, the right hand side of 1.34 converges to λR(λ)x − x. So R(γ)x ∈ D(A).
Moreover, we notice that AεR(γ)x→ AR(γ)x by definition. So we have

(1.36) (λI −A)R(γ)x = x

On the other hand, if x ∈ D(A), we have:

(1.37) R(λ)Aεx =

∫ ∞
0

e−γtQ(t)Aεx dt

Taking the limit as ε→ 0, use Q(t)Ax = d
dtQ(t)x and integration by part, we have:

(1.38)

R(λ)Ax =

∫ ∞
0

e−γtQ(t)Ax dt

= e−γtQ(t) |∞0 −
∫ ∞
0

(−γ)e−γtQ(t)x dt

= −x+ λR(λ)x

This gives us R(λ)(λI − A)x = x. Moreover, D(A) lies in the range of R(λ) com-
pleting the proof.

�

Now the next theorem gives conditions when an operator is the infinitesimal generator
of a semigroup.

Theorem 1.39. (Hille-Yosida) A densely defined operator A in a Banach space X is the
inifinitesimal generator of a strongly continuous semigroup {Q(t)} ⇔ there are constants
C, γ such that

(1.40) ||(λI −A)−m|| ≤ C(λ− γ)−m

for all λ > γ and all m ∈ N.
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Proof. By part (6) of the previous theorem, we have (λI − A)−1 = R(λ) for λ > γ where
R(λ)x =

∫∞
0
e−γtQ(t)x dt which is the Laplace transform of Q(t)x. Thus, R2(λ)x is the

transform of the convolution: R2(λ)x =
∫∞
0
Q(t − s)Q(s)x ds = tQ(t)x. Continuing this

way, we have:

(1.41) R(λ)mx =
1

(m− 1)!

∫ ∞
0

tm−1e−λtQ(t)xdt

for m = 1, 2, 3, ... Therefore, we have estimates:

(1.42) ||R(λ)m|| ≤ || C

(m− 1)!

∫ ∞
0

tm−1e−λte−γtdt|| = C(λ− γ)−m

This shows the ⇒ direction of the theorem.

Next, we set S(ε) = (I−εA)−1. For 0 < ε < ε0 = 1/λ. Then by assumption ||(λI−A)|| ≤
C(λ− γ)−m, we have:

(1.43) ||S(ε)|| ≤ C(1− εγ)−m

for m = 1, 2, 3, .... We also have by definition:

(1.44) S(ε)(I − εA)x = x = (I − εA)S(ε)x

We need to be cautious here since the first equality holds for x ∈ D(A), the set where A
is defined, but the second holds for all x ∈ X. By the first equality, we have x − S(ε)x =
εS(ε)Ax ≤ ε||S(ε)|| ||Ax||, thus

(1.45) lim
ε→0

S(ε)x = x

Since ||S(ε)|| ≤ C(1− εγ)−m||, {S(ε)} is equicontinuous and thus the above equation holds
for all x ∈ X. Now, let

(1.46) T (t, ε) = exp{tAS(ε)}
We claim that:

(1.47) ||T (t, ε)|| ≤ C exp{ γt

1− εγ
}

To show the claim. we first notice that from 1.44, we have εAS(ε) = S(ε)− I, which gives
tAS(ε) = t

ε (S(ε)− I)

(1.48)

||T (t, ε)|| = ||e−t/ε
∞∑
m=0

tmSm(ε)

εmm!
||

≤ e−t/ε
∞∑
m=0

tmC(1− εγ)−m

εmm!

= C exp{ 1

1− εγ
} ≤ C exp{ γt

1− εγ
}

for γ > 1/t, t > 0, 0 < ε < ε0. Now for x ∈ D(A), {T (t, ε)T (t, δ)−1x} = exp{tA(S(ε) −
S(δ))}x. Thus,

(1.49)

d

dt
{T (t, ε)T (t, δ)−1x} = A(S(ε)− S(δ) exp{tA(S(ε)− S(δ))}x

= T (t, ε)T (t, δ)−1(S(ε)− S(δ)Ax
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Integrating on both sides from 0 to t gives:

(1.50) T (t, ε)T (t, δ)−1x− x =

∫ t

0

T (u, ε)T (u, δ)−1(S(ε)− S(δ)Ax du

Applying T (t, δ) on both sides gives:

(1.51) T (t, ε)x− T (t, δ)x =

∫ t

0

T (u, ε)T (t− u, δ)−1(S(ε)− S(δ)Ax du

We note that the right hand side→ 0 as ε, δ → 0. This shows that T (t, ε) is Cauchy as ε→ 0.
The completeness of Banach space implies that limε→0 T (t, ε)x exists for all x ∈ D(A) uni-
formly on every bounded subset of [0,+∞). We let Q(t)x = limε→0 T (t, ε)x. 1.47 shows that
||Q(t)|| ≤ Ceγt. By equicontinuity and D(A) dense in X, we have Q(t) = limε→0 T (t, ε)x
defined for all x ∈ X. Q(t) is a strongly continuous semigroup follows directly from the
definition of T (t, ε)x.

Finally, we check that A is indeed the infinitesimal generator of {Q(t)}. Let Ã be the
infinitesimal generator of {Q(t)}, then by part (6) of 1.10, we have:

(1.52) (λI − Ã)−1x =

∫ ∞
0

e−γtQ(t)x dt

Since we have AS(ε) the infinitesimal generator of T (t, ε), we have

(1.53) (λI −AS(ε))−1x =

∫ ∞
0

e−γtT (t, ε)x dt

Taking the limit on both sides gives:

(1.54) (λI −A)−1x =

∫ ∞
0

e−γtQ(t)x dt

Thus, we have:

(1.55) (λI − Ã)−1x = (λI −A)−1x

which shows that Ã = A, and finishes this proof. �

1.2. Application to Evolution Equations.

In the final section we present the application of the semigroup theory to the problem of
well-posedness of evolutions equations. This should offer a glance at the role of semigroups
in the theory of PDEs.

We consider the initial value problem:

(1.56)

{
u̇(t) = Au(t) t ≥ 0,

u(0) = x

where t represents time and u(t) is a function with values in a Banach space X. A : D(A) ⊂
X → X a linear operator and x ∈ X the initial value. We call 1.56 the abstract Cauchy
problem (ACP) associated to (A,D(A)). A function u : R+ → X is called a (classical)
solution of ACP if u ∈ C1(X), u(t) ∈ D(A) for all t ≥ 0, and 1.56 holds.
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If a strongly continuous semigroupQ(t) is generated by (A,D(A)), noticing that d
dtQ(t)x =

AQ(t)x, we can check that u(t) = Q(t)x is a solution to 1.56, and it actually is the unique
solution, which is made rigorous by the following proposition. Thus, Hille-Yosida provides
the precise condition when 1.56 has a solution.

Proposition 1.57. Let (A,D(A)) be the infinitesimal generator of a strongly continuous
semigroup {Q(t)}, t ≥ 0. Then, for every x ∈ D(A), the function

(1.58) u : t 7→ u(t) := Q(t)x

is the unique solution to 1.56.

Proof. Q(t) satisfies 1.56 by theorem 1.10 part (4). We only need to prove the uniqueness.
We first notice that if u is a solution to 1.56, then u satisfies the integral equation:

(1.59) u(t) = A

∫ t

0

u(s) ds+ x

It’s sufficient to show that if x = 0, u ≡ 0. We consider:

(1.60)
d

ds
Q(t− s)

∫ s

0

u(r) dr = −Q(t− s)A
∫ s

0

u(r) dr +Q(t− s)u(s) dt = 0

Integrating both sides of above equation from 0 to t and using Q(0) = I gives:

(1.61)

∫ s

0

u(r) dr = 0 ⇒ u ≡ 0

�
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2. appendix

The details filled by me and not presented in the reference:

The comment after the 1.3, Banach Steinhaus Theorem, the details filled in in the proof
of the two theorems.

1.26 in Rudin is wrong (there shouldn’t be et term), I corrected the calculation.

1.34 Rudin has a typo that is corrected (eεγ−1 → eεγ − 1)

The comment before and after 1.56 is written by me.
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