THE HILLE-YOSIDA THEOREM

ALVIS ZHAODGHN

1. Semigroup of Operators

1.1. Semigroup Operators.

Definition 1.1. Let X be a Banach space. $Q(t), t \in [0, +\infty)$ is a family of bounded linear operators over X that satisfies:

- (1) Q(0) = I
- (2) Q(s+t) = Q(s)Q(t) for $s, t \ge 0$.

We say Q(t) is a **(one-parameter) semigroup** of operators. We say Q(t) is strongly continuous if it also satisfies:

(3) $\lim_{t\to 0} ||Q(t)x - x|| = 0$ for every $x \in X$.

We can associate with $\{Q(t)\}\$ the operator A_{ϵ} by

(1.2)
$$A_{\epsilon}x = \frac{1}{\epsilon}[Q(\epsilon)x - x] \quad x \in X, \epsilon > 0$$

Definition 1.3. The infinitesimal generator A is defined by

(1.4)
$$Ax = \lim_{\epsilon \to 0} A_{\epsilon}x$$

The **domain** $\mathcal{D}(A)$ is the set of all x where the above limit exists.

Clearly $\mathcal{D}(A)$ is a subspace of X. We check that A is a linear operator. For $x_1, x_2 \in \mathcal{D}(A)$, by strong continuity as $\epsilon \to 0$, $Q(\epsilon)x_1 + Q(\epsilon)x_2 \to x_1 + x_2$, and $Q(\epsilon)(x_1 + x_2) \to x_1 + x_2$, so $\lim_{\epsilon \to 0} A_{\epsilon}(x_1 + x_2) = \lim_{\epsilon \to 0} A_{\epsilon}(x_1) + A_{\epsilon}(x_2)$, that is $A(x_1 + x_2) = A(x_1) + A(x_2)$. $A(\alpha x) = \alpha A(x)$ for $\alpha \in \mathbb{C}$ follows from the same argument.

Given the definition of the infinitesimal generator, it is natural to ask when an operator is the infinitesimal generator of such a semigroup. This is answered in theorem 1.39.

Before stating the properties of $\{Q(t)\}\)$, we recall Banach Steinhaus Theorem from class without proof, which will be used in the proof of the following big theorem.

Theorem 1.5. (Banach Steinhaus) Let V, W be Banach spaces. Let $T_j \in L(V, W)$ for j = 1, 2, 3, ... Assume that for each $v \in V$, $\{T_jv\}$ is bounded for all j. (i.e. $\exists C_v$ such that $|T_jv| \leq C_v$.) Then $\{||T_j||\}$ is bounded for all j. (i.e. $\exists C$ such that $||T_j|| \leq C \forall j$.)

The definition of equicontinuity and the following two lemma will also be used in proving theorem 1.10 and 1.39:

Date: April 21, 2020.

alvis@live.unc.edu.

ALVIS ZHAODGHN

Definition 1.6. Let X and Y be topological vector spaces and Γ a collection of linear maps from X to Y. We say Γ is **equicontinuous** if for every neighborhood W of 0 in Y there corresponds a neighborhood V of 0 in X such that $\Gamma(V) \subset W$ for all $\Lambda \in \Gamma$.

Lemma 1.7. Let X, Y be topological vector spaces, $E \in \mathcal{B}(X, Y)$ is equicontinuous $\Leftrightarrow \exists M < \infty$ such that $||\Lambda|| \leq M \quad \forall \Lambda \in E$.

Lemma 1.8. Let X, Y be topological vector spaces, Y is a Frechet space. $\{\Lambda_n\}$ be an equicontinuous sequence of linear mappings from X to Y. If $\{\Lambda_n\}$ converges on some dense subset of X, it converges on all X, and the limit is continuous, that is

(1.9)
$$\Lambda(x) = \lim_{n \to \infty} \Lambda_n(x)$$

and $\Lambda(x)$ is continuous.

Now we are ready to state the first main theorem of strongly continuous semigroup operators.

Theorem 1.10. If the semigroup $\{Q(t)\}$ is strongly continuous, then:

(1) There are constants C, γ such that

$$(1.11) ||Q(t)|| \le Ce^{\gamma t} \quad 0 \le t \le \infty$$

- (2) $t \to Q(t)x$ is a continuous map of $[0, \infty)$ into X, for every $x \in X$.
- (3) $\mathcal{D}(A)$ is dense in X and A is closed.

(4) For every $x \in \mathcal{D}(A)$, we have

(1.12)
$$\frac{d}{dt}Q(t)x = AQ(t)x = Q(t)Ax$$

(5) For every $x \in X$,

(1.13)
$$Q(t)x = \lim_{\epsilon \to 0} (\exp(tA_{\epsilon}))x$$

where the convergence is uniform on every compact subset of $[0, \infty)$. (6) If $\lambda \in \mathbb{C}$ and $Re\lambda > \gamma$. the integral:

(1.14)
$$R(\lambda)x = \int_0^\infty e^{-\gamma t} Q(t) x dt$$

defines an operator $R(\lambda) \in \mathcal{B}(X)$ (bounded operators $X \to X$), called the **resolvent** of $\{Q(t)\}$, whose range is $\mathcal{D}(A)$ and which inverts $\lambda I - A$.

Proof. (1) Suppose there exists a sequence $(t_n) \to 0$ such that $||Q(t_n)|| \to \infty$. Banach Steinhaus theorem (using the contrapositive) implies that $\exists x \in X$ such that $\{||Q(t_n)x||\}$ is unbounded, which is a contradiction to to the assumption that Q(t)is strong continuous (i.e. $\lim_{t\to 0} ||Q(t)x - x|| = 0$). Hence, there exists C and $\delta > 0$ such that ||Q(t)|| < C on $[0, \delta]$. Now, if $t \in [0, +\infty)$, we pick $n \in \mathbb{N}$ such that $(n-1)\delta \leq t < n\delta$, then ||Q(t/n)|| < C.

(1.15)
$$||Q(t)|| = ||Q(n \cdot \frac{t}{n})|| = ||(Q(\frac{t}{n}))^n|| \le ||Q(t)||^n \le C^n \le C^{1+t/\delta}$$

Finally, choose $\gamma = \log C^{1/\delta}$, we have $||Q(t)|| \le Ce^{\gamma t}$

(2) Let
$$0 \le s < t \le T$$
, then
 $||Q(t)x - Q(s)x|| = ||Q(s + t - s)x - Q(s)x|| = ||Q(s)(Q(t - s)x - Ix)||$
(1.16) $\le ||Q(s)|| ||(Q(t - s)x - Ix)||$
 $\le Ce^{\gamma T}||(Q(t - s)x - Ix)||$

We note that the right hand side tends to zero when $t - s \to 0$ since $\lim_{t\to 0} ||Q(t)x - x|| = 0$, which proves the continuity.

(3) Since the previous part, we can define the integral

(1.17)
$$M_t x := \frac{1}{t} \int_0^t Q(s) x \, ds \, (x \in X, \ t > 0)$$

We note that $M_t \in \mathcal{B}(X)$ and $||M_t|| \leq Ce^{\gamma t}$ by part (1) of this theorem. We claim:

(1.18)
$$A_{\epsilon}M_{t}x = A_{t}M_{\epsilon}x \quad (\epsilon, t > 0, \ x \in X)$$

To prove the claim, we consider the equation:

(1.19)
$$\int_{\epsilon}^{\epsilon+t} Q(s)x - \int_{0}^{t} Q(s)x = \int_{t}^{\epsilon+t} Q(s)x - \int_{0}^{\epsilon} Q(s)x$$

By a change of variable, we have the left hand side of 1.19 equals

(1.20)
$$\int_0^t [Q(\epsilon+s) - Q(s)]x = \int_0^t [Q(\epsilon)Q(s) - Q(s)]x$$
$$= ((Q(\epsilon) - I)t)(\frac{1}{t}\int_0^t Q(s)x) = \epsilon A_\epsilon t M_t x$$

The right hand side of 1.19 equals to:

(1.21)
$$\int_0^{\epsilon} [Q(t+s) - Q(s)]x = \int_0^{\epsilon} [Q(t)Q(s) - Q(s)]x$$
$$= ((Q(t) - I)\epsilon)(\frac{1}{\epsilon} \int_0^{\epsilon} Q(s)x) = tA_t \epsilon M_{\epsilon}x$$

Above calculations proves the claim 1.18. We also have:

(1.22)
$$||M_t x - x|| = ||\frac{1}{t} \int_0^t (Q(s) - I) x \, ds|| \le ||\sup_{[0,t]} Q(s) x - Ix|| \to 0$$

Thus, as $\epsilon \to 0$, $A_t M_{\epsilon} x \to A_t x$, so $A_{\epsilon} M_t x \to A_t$. This shows that $M_t x \in \mathcal{D}(A)$. Since $M_{\epsilon} x \to x$, $\mathcal{D}(A)$ is dense in X. Moreover, we have

(1.23)
$$AM_t x = \lim_{\epsilon \to 0} A_\epsilon M_t x = \lim_{\epsilon \to 0} A_t M_\epsilon x = A_t x$$

To show A is a close map, suppose $x_n \in \mathcal{D}(A)$, $x_n \to x$, and $Ax_n \to y$. Since Q(s), Q(t) commute, A_{ϵ} and M_t commute, and therefore A commutes with M_t on $\mathcal{D}(A)$. 1.23 gives:

As $n \to \infty$, we have on the one hand $A_t x_n \to A_t x$, and on the other hand $M_t A x_n \to M_t y$. So $A_t x = M_t y$. As $t \to 0$. $M_t y \to y$. This shows that the limit of the left hand side exists i.e. $x \in \mathcal{D}(A)$ and A x = y, which finishes this part of the proof.

(4) Multiply t on both sides of 1.23 Gives

(1.25)
$$A \int_0^t Q(s)x \, ds = Q(t)x - x$$

Since Q(s) is continuous, we can differentiate both sides with respect to t, which gives us (4). $(Q(t)Ax = AQ(t)x \text{ since } Q(t)A_{\epsilon} = A_{\epsilon}Q(t))$

(5) We first need an estimate of $\exp\{tA_{\epsilon}\}$:

$$(1.26) \qquad ||\exp\{tA_{\epsilon}\}|| = ||e^{-t/\epsilon}\exp\{\frac{t}{\epsilon}Q(\epsilon)\}|| = ||e^{-t/\epsilon}\sum_{n=0}^{\infty}\frac{t^{n}Q(n\epsilon)}{\epsilon^{n}n!}||$$
$$\leq e^{-t/\epsilon}\sum_{n=0}^{\infty}\frac{t^{n}||Q(n\epsilon)||}{\epsilon^{n}n!} \leq e^{-t/\epsilon}\sum_{n=0}^{\infty}\frac{t^{n}Ce^{\gamma\epsilon n}}{\epsilon^{n}n!} \ (by \ part \ (1))$$
$$= Ce^{-t/\epsilon}\exp(\frac{te^{\gamma\epsilon}}{\epsilon}) = C\exp(\frac{t}{\epsilon}(e^{\gamma\epsilon}-1))$$

For $0 < \epsilon \leq 1$, we claim $C \exp(\frac{t}{\epsilon}(e^{\gamma\epsilon} - 1)) < C \exp(te^{\gamma})$. To see this, we show

(1.27)
$$\frac{t}{\epsilon}(e^{\gamma\epsilon}-1) < te^{\gamma} \Leftrightarrow te^{\gamma\epsilon} - t < \epsilon te^{\gamma}$$

We denote the LHS, RHS by $f(\epsilon)$, $g(\epsilon)$ resp. First we notice that f(0) = g(0). Taking ϵ derivative on both sides gives $f'(\epsilon) = t\gamma e^{\gamma\epsilon}$ and $g'(\epsilon) = te^{\gamma}$. Now notice again that f'(1) = g'(1). We check that $f''(\epsilon) = t\gamma^2 e^{\gamma\epsilon} > 0$, $g''(\epsilon) = 0 \Rightarrow f'(\epsilon) < g'(\epsilon) \Rightarrow f(\epsilon) < g(\epsilon)$ and the claim is proved. Above discussion gives for $0 < \epsilon < 1$:

(1.28)
$$||\exp\{tA_{\epsilon}\}|| \le C\exp(te^{\gamma})$$

Now for fixed $x \in X$, we define:

(1.29)
$$\phi(s) = (\exp((t-s)A_{\epsilon}))Q(s)x \quad (0 \le s \le t)$$

If $x \in \mathcal{D}(A)$, part (4) of this theorem gives:

(1.30)
$$\phi'(s) = (\exp((t-s)A_{\epsilon})Q(s)(Ax - A_{\epsilon}x))$$

(1.31)
$$\begin{aligned} ||\phi'(s)|| &\leq ||(\exp((t)A_{\epsilon})|| \ ||Q(t)|| \ ||(Ax - A_{\epsilon}x)|| \\ &\leq C\exp(te^{\gamma})Ce^{\gamma t}||(Ax - A_{\epsilon}x)|| \equiv K(t)||(Ax - A_{\epsilon}x)|| \end{aligned}$$

where K(t) is a constant that depend on t, $0 < \epsilon \leq 1$. We note that $\phi(t) = Q(t)x$, and $\phi(0) = \exp(tA_{\epsilon})x$. Fundamental theorem of calculus implies:

(1.32)
$$||Q(t)x - \exp(tA_{\epsilon})x|| = ||\phi(t) - \phi(0)|| = ||\int_{0}^{t} \phi'(s)ds|| \le tK(t)||(Ax - A_{\epsilon}x)||$$

If $x \in \mathcal{D}(A)$, taking $\epsilon \to 0$ proves the statement in the theorem.

To prove for all $x \in X$, we first note that $||Q(t) - \exp(tA_{\epsilon})||$ is bounded for $0 < t \leq T, 0 < \epsilon \leq 1$ since ||Q(t)|| and $||\exp(tA_{\epsilon})||$ are. So these operators form an equicontinuous family of operators by 1.7. It follows that their convergence on the dense set (D)(A) forces their convergence of all $x \in X$ by 1.8, which finishes the proof of this part of the theorem.

(6) We first have $||R(\gamma)|| \leq C \int_0^\infty e^{(\gamma - Re\lambda)} t dt = C \frac{1}{Re\lambda - \gamma} < \infty$. So $R(\gamma)$ is bounded. We calculate $\epsilon A_{\epsilon} R(\gamma) x$:

(1.33)
$$\epsilon A_{\epsilon} R(\gamma) x = \int_{0}^{\infty} e^{-\gamma t} (Q(\epsilon) - I) Q(t) x dt = \int_{0}^{\infty} e^{-\gamma t} (Q(\epsilon + t) - Q(t)) x dt$$
$$= \int_{0}^{\infty} e^{-\gamma t} Q(\epsilon + t) x dt - \int_{0}^{\infty} e^{-\gamma t} Q(t) x dt$$

Replace t with $t - \epsilon$ to the first integral, and applying integration by parts, we have:

$$A_{\epsilon}R(\gamma)x = \frac{1}{\epsilon}e^{-\epsilon\gamma}\int_{\epsilon}^{\infty}e^{-\gamma t}Q(t)x \,dt - \frac{1}{\epsilon}\int_{0}^{\infty}e^{-\gamma t}Q(t)xdt$$

$$(1.34) \qquad \qquad = \frac{1}{\epsilon}e^{-\epsilon\gamma}\left(\int_{0}^{\infty}e^{-\gamma t}Q(t)x \,dt - \int_{0}^{\epsilon}e^{-\gamma t}Q(t)x \,dt\right) - \frac{1}{\epsilon}\int_{0}^{\infty}e^{-\gamma t}Q(t)xdt$$

$$= \frac{1}{\epsilon}(e^{\epsilon\gamma} - 1)R(\gamma)x - \frac{1}{\epsilon}e^{\epsilon\gamma}\int_{0}^{\epsilon}e^{-\gamma t}Q(t)x \,dt$$

As $\epsilon \to 0$ 1.22 shows that the second integral $\to x$. Below calculations show that $\frac{1}{\epsilon}(e^{\epsilon\gamma}-1)R(\gamma)x \to \gamma$:

(1.35)
$$\frac{1}{\epsilon}(e^{\epsilon\gamma} - 1) = \frac{1}{\epsilon}(1 + \epsilon\lambda + o(\lambda\epsilon) - 1) \to \lambda$$

Thus, the right hand side of 1.34 converges to $\lambda R(\lambda)x - x$. So $R(\gamma)x \in \mathcal{D}(A)$. Moreover, we notice that $A_{\epsilon}R(\gamma)x \to AR(\gamma)x$ by definition. So we have

(1.36)
$$(\lambda I - A)R(\gamma)x = x$$

On the other hand, if $x \in \mathcal{D}(A)$, we have:

(1.37)
$$R(\lambda)A_{\epsilon}x = \int_{0}^{\infty} e^{-\gamma t}Q(t)A_{\epsilon}x \ dt$$

Taking the limit as $\epsilon \to 0$, use $Q(t)Ax = \frac{d}{dt}Q(t)x$ and integration by part, we have:

(1.38)

$$R(\lambda)Ax = \int_{0}^{\infty} e^{-\gamma t}Q(t)Ax \ dt$$

$$= e^{-\gamma t}Q(t) |_{0}^{\infty} - \int_{0}^{\infty} (-\gamma)e^{-\gamma t}Q(t)x \ dt$$

$$= -x + \lambda R(\lambda)x$$

This gives us $R(\lambda)(\lambda I - A)x = x$. Moreover, $\mathcal{D}(A)$ lies in the range of $R(\lambda)$ completing the proof.

Now the next theorem gives conditions when an operator is the infinitesimal generator of a semigroup.

Theorem 1.39. (Hille-Yosida) A densely defined operator A in a Banach space X is the inifinitesimal generator of a strongly continuous semigroup $\{Q(t)\} \Leftrightarrow$ there are constants C, γ such that

(1.40)
$$||(\lambda I - A)^{-m}|| \le C(\lambda - \gamma)^{-m}$$

for all $\lambda > \gamma$ and all $m \in \mathbb{N}$.

ALVIS ZHAODGHN

Proof. By part (6) of the previous theorem, we have $(\lambda I - A)^{-1} = R(\lambda)$ for $\lambda > \gamma$ where $R(\lambda)x = \int_0^\infty e^{-\gamma t}Q(t)x \, dt$ which is the Laplace transform of Q(t)x. Thus, $R^2(\lambda)x$ is the transform of the convolution: $R^2(\lambda)x = \int_0^\infty Q(t-s)Q(s)x \, ds = tQ(t)x$. Continuing this way, we have:

(1.41)
$$R(\lambda)^m x = \frac{1}{(m-1)!} \int_0^\infty t^{m-1} e^{-\lambda t} Q(t) x dt$$

for m = 1, 2, 3, ... Therefore, we have estimates:

(1.42)
$$||R(\lambda)^{m}|| \le ||\frac{C}{(m-1)!} \int_{0}^{\infty} t^{m-1} e^{-\lambda t} e^{-\gamma t} dt|| = C(\lambda - \gamma)^{-m}$$

This shows the \Rightarrow direction of the theorem.

Next, we set $S(\epsilon) = (I - \epsilon A)^{-1}$. For $0 < \epsilon < \epsilon_0 = 1/\lambda$. Then by assumption $||(\lambda I - A)|| \le C(\lambda - \gamma)^{-m}$, we have:

(1.43)
$$||S(\epsilon)|| \le C(1-\epsilon\gamma)^{-m}$$

for $m = 1, 2, 3, \dots$ We also have by definition:

(1.44)
$$S(\epsilon)(I - \epsilon A)x = x = (I - \epsilon A)S(\epsilon)x$$

We need to be cautious here since the first equality holds for $x \in \mathcal{D}(A)$, the set where A is defined, but the second holds for all $x \in X$. By the first equality, we have $x - S(\epsilon)x = \epsilon S(\epsilon)Ax \le \epsilon ||S(\epsilon)|| ||Ax||$, thus

(1.45)
$$\lim_{\epsilon \to 0} S(\epsilon)x = x$$

Since $||S(\epsilon)|| \leq C(1 - \epsilon \gamma)^{-m}||$, $\{S(\epsilon)\}$ is equicontinuous and thus the above equation holds for all $x \in X$. Now, let

(1.46)
$$T(t,\epsilon) = \exp\{tAS(\epsilon)\}$$

We claim that:

(1.47)
$$||T(t,\epsilon)|| \le C \exp\{\frac{\gamma t}{1-\epsilon\gamma}\}$$

To show the claim. we first notice that from 1.44, we have $\epsilon AS(\epsilon) = S(\epsilon) - I$, which gives $tAS(\epsilon) = \frac{t}{\epsilon}(S(\epsilon) - I)$

(1.48)
$$||T(t,\epsilon)|| = ||e^{-t/\epsilon} \sum_{m=0}^{\infty} \frac{t^m S^m(\epsilon)}{\epsilon^m m!}||$$
$$\leq e^{-t/\epsilon} \sum_{m=0}^{\infty} \frac{t^m C(1-\epsilon\gamma)^{-m}}{\epsilon^m m!}$$
$$= C \exp\{\frac{1}{1-\epsilon\gamma}\} \leq C \exp\{\frac{\gamma t}{1-\epsilon\gamma}\}$$

for $\gamma > 1/t$, t > 0, $0 < \epsilon < \epsilon_0$. Now for $x \in \mathcal{D}(A)$, $\{T(t,\epsilon)T(t,\delta)^{-1}x\} = \exp\{tA(S(\epsilon) - S(\delta))\}x$. Thus,

(1.49)
$$\frac{a}{dt} \{ T(t,\epsilon)T(t,\delta)^{-1}x \} = A(S(\epsilon) - S(\delta)\exp\{tA(S(\epsilon) - S(\delta))\}x$$
$$= T(t,\epsilon)T(t,\delta)^{-1}(S(\epsilon) - S(\delta)Ax$$

Integrating on both sides from 0 to t gives:

(1.50)
$$T(t,\epsilon)T(t,\delta)^{-1}x - x = \int_0^t T(u,\epsilon)T(u,\delta)^{-1}(S(\epsilon) - S(\delta)Ax \ du$$

Applying $T(t, \delta)$ on both sides gives:

(1.51)
$$T(t,\epsilon)x - T(t,\delta)x = \int_0^t T(u,\epsilon)T(t-u,\delta)^{-1}(S(\epsilon) - S(\delta)Ax \ du$$

We note that the right hand side $\to 0$ as $\epsilon, \delta \to 0$. This shows that $T(t, \epsilon)$ is Cauchy as $\epsilon \to 0$. The completeness of Banach space implies that $\lim_{\epsilon \to 0} T(t, \epsilon)x$ exists for all $x \in \mathcal{D}(A)$ uniformly on every bounded subset of $[0, +\infty)$. We let $Q(t)x = \lim_{\epsilon \to 0} T(t, \epsilon)x$. 1.47 shows that $||Q(t)|| \leq Ce^{\gamma t}$. By equicontinuity and $\mathcal{D}(A)$ dense in X, we have $Q(t) = \lim_{\epsilon \to 0} T(t, \epsilon)x$ defined for all $x \in X$. Q(t) is a strongly continuous semigroup follows directly from the definition of $T(t, \epsilon)x$.

Finally, we check that A is indeed the infinitesimal generator of $\{Q(t)\}$. Let \hat{A} be the infinitesimal generator of $\{Q(t)\}$, then by part (6) of 1.10, we have:

(1.52)
$$(\lambda I - \tilde{A})^{-1}x = \int_0^\infty e^{-\gamma t} Q(t)x \ dt$$

Since we have $AS(\epsilon)$ the infinitesimal generator of $T(t, \epsilon)$, we have

(1.53)
$$(\lambda I - AS(\epsilon))^{-1}x = \int_0^\infty e^{-\gamma t} T(t,\epsilon)x \ dt$$

Taking the limit on both sides gives:

(1.54)
$$(\lambda I - A)^{-1} x = \int_0^\infty e^{-\gamma t} Q(t) x \ dt$$

Thus, we have:

(1.55)
$$(\lambda I - \tilde{A})^{-1}x = (\lambda I - A)^{-1}x$$

which shows that $\tilde{A} = A$, and finishes this proof.

1.2. Application to Evolution Equations.

In the final section we present the application of the semigroup theory to the problem of well-posedness of evolutions equations. This should offer a glance at the role of semigroups in the theory of PDEs.

We consider the initial value problem:

(1.56)
$$\begin{cases} \dot{u}(t) = Au(t) & t \ge 0, \\ u(0) = x \end{cases}$$

where t represents time and u(t) is a function with values in a Banach space X. $A : \mathcal{D}(A) \subset X \to X$ a linear operator and $x \in X$ the initial value. We call 1.56 the **abstract Cauchy** problem (ACP) associated to $(A, \mathcal{D}(A))$. A function $u : \mathbb{R}^+ \to X$ is called a (classical) solution of ACP if $u \in C^1(X)$, $u(t) \in \mathcal{D}(A)$ for all $t \ge 0$, and 1.56 holds.

ALVIS ZHAODGHN

If a strongly continuous semigroup Q(t) is generated by $(A, \mathcal{D}(A))$, noticing that $\frac{d}{dt}Q(t)x = AQ(t)x$, we can check that u(t) = Q(t)x is a solution to 1.56, and it actually is the unique solution, which is made rigorous by the following proposition. Thus, Hille-Yosida provides the precise condition when 1.56 has a solution.

Proposition 1.57. Let $(A, \mathcal{D}(A))$ be the infinitesimal generator of a strongly continuous semigroup $\{Q(t)\}, t \geq 0$. Then, for every $x \in \mathcal{D}(A)$, the function

$$(1.58) u: t \mapsto u(t) := Q(t)x$$

is the unique solution to 1.56.

Proof. Q(t) satisfies 1.56 by theorem 1.10 part (4). We only need to prove the uniqueness. We first notice that if u is a solution to 1.56, then u satisfies the integral equation:

(1.59)
$$u(t) = A \int_0^t u(s) \, ds + x$$

It's sufficient to show that if x = 0, $u \equiv 0$. We consider:

(1.60)
$$\frac{d}{ds}Q(t-s)\int_0^s u(r) dr = -Q(t-s)A\int_0^s u(r) dr + Q(t-s)u(s) dt = 0$$

Integrating both sides of above equation from 0 to t and using Q(0) = I gives:

(1.61)
$$\int_0^s u(r) \, dr = 0 \quad \Rightarrow \quad u \equiv 0$$

THE HILLE-YOSIDA THEOREM

2. Appendix

The details filled by me and not presented in the reference:

The comment after the 1.3, Banach Steinhaus Theorem, the details filled in in the proof of the two theorems.

1.26 in Rudin is wrong (there shouldn't be e^t term), I corrected the calculation.

1.34 Rudin has a typo that is corrected $(e^{\epsilon\gamma-1} \rightarrow e^{\epsilon\gamma}-1)$

The comment before and after 1.56 is written by me.

3. Bibliography

Engel, K.-J., Nagel, R., Brendle, S. (n.d.). One-parameter semigroups for linear evolution equations.

Rudin, W. (1991). Functional analysis. New York: McGraw-Hill.